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ABSTRACT 

 

The effective application of current decision tree and influence diagram software requires a 

relatively high level of sophistication in the theory and practice of decision analysis. 

Research on intelligent decision systems aims to lower the cost and amount of training 

required to use these methods through the use of knowledge-based systems; however, 

application prototypes implemented to date have required time-consuming and tedious hand-

crafting of knowledge bases. This paper describes the development of DDUCKS, an “open 

architecture” problem-modeling environment that integrates components from Axotl, a 

knowledge-based decision analysis workbench, with those of Aquinas, a knowledge 

acquisition workbench based on personal construct theory. The knowledge base tools in 

Axotl can be configured with knowledge to provide guidance and help in formulating, 

evaluating, and refining decision models represented in influence diagrams. Knowledge 

acquisition tools in DDUCKS will allow the knowledge to be efficiently modeled, more 

easily maintained, and thoroughly tested. 

 

1. INTRODUCTION 

1.1. Progress in Automated Decision Analysis 

 

The Boeing Company has an urgent need for advanced automated decision support 

applications. Rapid growth in the complexity of strategic and tactical decisions has 



outstripped the capacity of conventional decision aids. Informal, checklist, and rating 

methods are helpful for simple decisions, but are inadequate for the analysis of tradeoffs 

involving allocations of critical resources. Spreadsheet, data base, and linear programming 

models for decision making likewise break down with large amounts of uncertain, 

incomplete, or conflicting data. Such approaches cannot effectively embody the intuition and 

flexibility of human decision makers. 

 

Knowledge-based systems have been widely hailed as a solution to the problem of modeling 

expert problem solving knowledge. Unfortunately, typical knowledge-based approaches also 

have their limitations. Rule-based methods employing heuristic certainty factors have been 

shown to perform poorly in problems involving large amounts of uncertainty or risk, and the 

kinds of complex tradeoffs that inevitably emerge in strategic decision making (Horvitz, 

Breese, and Henrion, 1988). Furthermore, knowledge-based approaches are not sufficiently 

flexible for many decisions, since tradeoffs may vary greatly across individual cases 

(Langlotz, Shortliffe, and Fagan, 1986). Finally,  knowledge-based system development 

environments do not generally provide facilities for integrating historical data with expert 

judgment (Spiegelhalter, Franklin, and Bull, 1990). 

 

One of the most promising approaches to dealing with decision complexity in a consistent, 

general-purpose manner is decision analysis (Howard, 1966; Howard & Matheson, 1984; 

Keeney & Raiffa, 1976; Raiffa, 1968). In the past few years, researchers and developers have 

made important theoretical advances and have implemented several successful systems for 

automated support of the decision analysis process (reviews by Horvitz, Breese, & Henrion, 

1988; Pearl, 1988; Neapolitan, 1990). Although a thorough discussion is beyond the scope of 

this paper, we wish to review three of the important developments that have led to the current 

state of the art. Following this, we will explain why we think that the development of 

automated knowledge acquisition tools is crucial to the future of efforts to deliver decision 

analysis methodology to a wider spectrum of decision makers and domains. 



 

Decision tree software. The development of decision tree software (Figure 1) represented an 

important milestone in automated decision analysis support (Olmsted, 1982; McNamee & 

Celona, 1987). Through the use of general-purpose commercial tools, decision analysis 

techniques have become more widely known and used than ever before. At the same time, 

there are several drawbacks to the use of decision trees as a representation device. For one 

thing, they grow exponentially with problem size, making them impractical for problems of 

significant size. Additionally, the tree metaphor for decision problems often leads 

participants to confuse chronology with the order of probabilistic expansions. 
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Figure 1. Decision analysis techniques have become more widely used through the availability of decision tree 

software. 

 

Influence diagram software. Conceived by Howard and Matheson (1981), influence 

diagrams represent an important advance in the representation of decision problems (Figure 

2). While retaining the essentials of the decision theoretic mathematical foundation 

developed for decision tree manipulation, they provide several advantages over decision 

trees. Technically, they are superior in that they can explicitly represent and exploit 

conditional independence relationships between variables. From a practical point of view, 

they provide a clear and intuitive way of communicating the structure of a decision model. 

With the advent of commercial software (e.g., Shachter, 1986b) and the assumption of 

continued success by researchers developing tractable methods for evaluating large influence 

diagrams (review by Henrion, 1990), we expect influence diagrams to eventually replace 

decision tree representations for most applications. 
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Figure 2. Influence diagrams provide both technical and practical advantages over decision trees. 

 

Intelligent decision systems. Unfortunately,  the effective application of both decision tree 

and influence diagram software requires a relatively high level of sophistication in the theory 

and practice of decision analysis. These tools contain some of the algorithms of decision 

analysis practice, but cannot embody the experience and intuition of decision analysis 

professionals in formulating and appraising decision models. Also, because these tools 

cannot conveniently store and reuse domain expertise, they cannot exploit the similarity 

between recurring decisions in the same domain. New decisions are typically modeled from 

scratch. 

 

The importance of these issues led Holtzman (1989) to define an approach for a third 

generation of automated decision analysis software called intelligent decision systems (IDS)1. 

An IDS combines a set of automated decision analysis tools with a knowledge-based system 

that helps decision makers without extensive training in decision analysis build, evaluate, and 

refine decision models in some well specified domain (Figure 3). To build an IDS application 

for a class of decision problems, decision analysts and domain experts work with a 

knowledge engineer to configure the system with “application-independent”2 knowledge  

(i.e., knowledge of decision analysis tools and methodology) and application-specific 

knowledge (i.e., knowledge about a particular domain). Once built, these knowledge bases 

can be used again and again to provide guidance and help during consultations with decision 

makers. Task-level consultation interfaces pose questions and interpret results in language 

                                                
1 Related approaches to combining decision analysis and knowledge-based systems have been developed by Breese (1987), 
Keeney (1986), Moore & Agogino (1987), and Wellman (1986). 
 
2 Of course, no knowledge-base is truly application-independent; perhaps “multiple-use” would be a better term. 
 



and graphical presentations tailored to the decision maker, rather than in terms of standard 

decision analysis concepts. 
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Figure 3. Intelligent decision systems (IDS) combine decision analysis tools with a knowledge-based system 

 

Through implementing a general-purpose IDS architecture (Axotl) and applying it to the 

domain of R&D project selection within The Boeing Company (PIE) we have become 

convinced that decision analysis can be delivered effectively and economically through the 

use of knowledge-based systems (Bradshaw & Holtzman, 1987; Bradshaw, Covington, & 

Russo, 1989). We found that the development of knowledge bases for such a system was 

relatively straightforward compared to other knowledge-based systems we had created 

because we were dealing with a methodology (decision analysis) that was mature and 

rigorously defined. However, we were dissatisfied that so much hand-crafting of knowledge 

bases had to be performed by knowledge engineers. Through the development of knowledge 



acquisition tools, we hoped that much more of the knowledge base could be constructed by 

domain or decision analysis experts themselves.  

 

1.2. Knowledge Acquisition for Fourth-Generation Decision Analysis Support Tools 

 

Figure 4 shows how automated knowledge acquisition tools would fit within an architecture 

for advanced decision analysis support tools. Knowledge acquisition tools could help cut 

down the lengthy and error-prone revise-and-review cycle in the development of such 

systems, making delivery of IDS applications practical on a large scale. While it is unrealistic 

to expect that the role of knowledge engineers would entirely disappear, their participation in 

many aspects of knowledge base development and maintenance could be minimized. Figure 

4 explicitly includes interfaces to conventional software and external data. The success of 

future systems in practical applications will depend on whether they can be effectively 

integrated with other software such as databases, spreadsheets, and hypermedia 

environments. 
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Figure 4. Knowledge acquisition tools and interfaces to conventional software will be an important part of 

future decision analysis support systems. 



 

2. APPROACH 

2.1. A Framework for Knowledge Acquisition 

2.1.1. Automating Knowledge Acquisition at the Boeing Advanced Technology 

Center 

 

The ideal environment for the growth of new tools is one that provides a balance between 

technology push and application pull. Developers have ideas they feel might be useful for 

solving a future application problem —technology push —and applications present more 

immediate problems that need to be solved —application pull. Technology push tends to 

be farsighted and application pull tends to be shortsighted. When technology push is the 

only force, there is a danger that any tools developed will not be useful since they are not 

anchored in real problems, only a developer's vision of what the problems may be. When 

application pull is the only force, tools tend to be developed for special purposes and are 

hard to generalize to other problems. In such a demand-driven environment, 

revolutionary (or even evolutionary) breakthroughs are rare. Ideally, push and pull forces 

should both act on a technology development project at the same time, leading to tools 

that are farsighted, general, and yet useful for a variety of problems. 

 

Boeing's Advanced Technology Center provides a unique environment that fosters the 

interplay of technology push and application pull. The Center sponsored an Associates' 

Program that helped transfer artificial intelligence technology to the rest of Boeing. 

Associates spent one year at the Center, where they attended courses and developed 

prototypes to solve a specific problem in their home division. When the year's training 

was complete, Associates returned to their groups where they continued to develop and 

eventually field the applications. Over 95 Associates graduated from the program; the 

majority of them built knowledge-based systems. At the same time, the Center was 

working with universities to import advanced technology projects and was developing its 



own projects in the areas of vision, robotics, speech understanding, natural language, 

machine learning, and knowledge-based systems. 

 

The large projected number of knowledge-based system projects in Boeing provided 

motivation for a strong program in knowledge acquisition. Knowledge acquisition, the 

most labor-intensive phase of knowledge-based system development, was seen as a way 

of minimizing the major cost drivers in the development of such systems as well as a 

means of ensuring reliability and maintainability of the resultant knowledge bases. The 

Advanced Technology Center has supported the organization of annual AAAI-sponsored 

knowledge acquisition workshops in Banff, Canada; annual European knowledge 

acquisition workshops at at various locations; and, beginning in 1990, a Pacific Rim 

knowledge acquisition workshop. Scientists at Boeing have participated in the 

development, application, and evaluation of several automated knowledge acquisition 

tools, including ETS (Expertise Transfer System; Boose, 1985, 1986), Aquinas  (Boose & 

Bradshaw, 1987; Boose, Shema, & Bradshaw, 1989), SALT (Marcus, 1987; Marcus, 

1988), and KNACK (Kitto, 1988; Klinker, Boyd, Genetet, & McDermott, 1988). 

 

As automated knowledge acquisition tools have been applied across a number of domains 

within The Boeing Company, impressive increases in efficiency have been demonstrated. 

Computer-based verification and validation methods as part of the knowledge acquisition 

process have improved the performance of knowledge-based systems by focusing 

attention on gaps and inconsistencies in the knowledge base. Knowledge engineers can 

maintain large knowledge bases much more easily and efficiently within such automated 

knowledge acquisition tools than through conventional methods. 

 

Because the implementation of automated knowledge acquisition tools is itself labor 

intensive, their development can often be justified only if it can be demonstrated that they 

can be easily applied to more than a single application. Knowledge acquisition tool 



developers interested in deriving the most benefit from their tools may look for areas 

consisting of several problems that can each be characterized by a general task model 

(Boose, 1989). For example, ETS and Aquinas have been applied to a number of diverse 

problems that fit a heuristic classification approach (Boose, Bradshaw, Kitto, & Shema, 

1990); SALT has been generalized to work for scheduling and design problems (Marcus, 

1989; Stout, Green, & Marcus, 1989); and KNACK has been used to produce a series of 

reporting systems (Klinker, Boyd, Dong, Maiman, & McDermott, 1989). 

 

2.1.2. What is a Knowledge Acquisition Tool? 

 

Over the years, many of our views on knowledge acquisition have changed. Current work 

in knowledge acquisition emphasizes that creation of knowledge bases is a constructive 

modeling process and not simply a matter of “expertise transfer” (Bradshaw & Boose, 

1990; Akkermans et al., 1990). Additionally, we used to think of knowledge acquisition 

as something that occurred mainly in the early stages of knowledge-based system 

development. Now we have come to realize that  work in automated knowledge 

acquisition addresses the problem of designing appropriate representations and 

procedures to facilitate creation, validation, verification, and maintenance of knowledge 

bases over the lifetime of a knowledge-based system (cf. Ford et al., 1990c). Thus, it 

might be said that researchers are attempting to do for knowledge engineering what 

CASE is doing for traditional software engineering (Bradshaw & Boose, 1989; Gaines, 

1988) 

 

Commercial expert system shell vendors have begun to realize the need for knowledge 

acquisition capabilities and many have been claiming to provide such support within their 

tools. How can a potential purchaser of such a product tell if an expert system shell truly 

supports automated knowledge acquisition? 

 



A knowledge acquisition tool is more than a good graphical interface. Automated knowledge 

acquisition tools augment the facilities typically available in knowledge-base development 

environments by providing interfaces that focus the interaction between the tool and the 

expert or knowledge engineer.Some earmarks of a good knowledge acquisition tool are the 

following: 

 

• role-limiting methods 

 

• mediating knowledge 

   representations 

 

• interviewing techniques 

 

• analysis tools. 

 

Role-limiting methods. Many knowledge acquisition tools derive their power from 

relying on a well defined problem-solving model that establishes and controls the 

sequences of actions required to perform some task (Gruber, 1989; Karbach, Linster & 

Voss, 1990; Klinker, 1989). For example, SALT (Marcus, 1988) is based on a method for 

design called “propose-and-revise”, while MOLE (Eshelman, 1988) uses a method of 

heuristic classification called “cover-and-differentiate”. The problem-solving method 

defines the kind of knowledge applicable within each step, thereby making explicit the 

different roles knowledge plays. Once these roles are defined, knowledge acquisition 

tools appropriate to each kind of knowledge are designed. 

 

Mediating knowledge representations. Knowledge acquisition tools attempt to 

minimize the problem of representation mismatch, the disparity between a person’s task-

level description of the problem and its realization in some computable form (Gruber, 



1989). This problem is addressed through the design of mediating representations that 

provide a bridge between verbal data and typical knowledge representation schemes such 

as production rules: 

 

“[Mediating representations] are able to provide a formal representation that can 

be explicitly mapped to the internal architecture and knowledge of an expert 

system and which is easily readable by those who were not involved in the 

original development programme…” (Diaper, 1989, p. 34)1 

 

Knowledge acquisition tools employing mediating representations take one of two 

approaches: either they contain interfaces that bear a strong resemblance in appearance 

and procedure to the original task (e.g., cancer-therapy protocol forms in OPAL (Musen, 

1988); engineering notebooks in vmacs (Sivard, Zweben, Cannon, Lakin & Leifer, 

1989)) or they rely on some familiar, high-level, generic knowledge representation 

metaphor (e.g., repertory grids in ETS, (Boose, 1985, 1986); concept maps in ICONKAT 

(Ford et al., 1990b)). Structured high-level representations are used to maintain the 

knowledge base, but if necessary they can be transformed into other forms such as rules 

(Gaines & Shaw, 1986; Ford et al., 1990b). Transformation of knowledge into multiple 

forms or perspectives for visualization purposes is useful as a means of facilitating 

insight. 

 

Interviewing techniques. A number of interviewing techniques have been developed or 

borrowed from fields such as psychology in order to guide experts through the 
                                                
1  Some differences in the literature exist over the terms “mediating” and “intermediate” representations. Johnson (1989, p. 
184) defines an intermediate representation as one “which only exists between flanking representations and is bound to them 
by clearly defined projection rules which map one representation to the next” while the term mediating representation is 
preferred to “convey the sense of synthesis and coming to understand through the representation.” When we employ the 
term “mediating representation” to refer to devices used within our knowledge acquisition tools we mean something of both 
senses. Of course, a most important function of the representation in the early stages of knowledge engineering is better 
communication and insight among the participants. However, the iterative nature of knowledge refinement requires 
frequent, coupled cycles between elicitation, analysis, and performance elements of the system, which presupposes some 
sorts of mappings between various human and machine-oriented representations. These mappings, should not be regarded as 
having solved the philosophically troublesome issues surrounding the nature of knowledge and expertise, but simply as an 
application of well-known principles of human interface design to the problem of making knowledge structures more 
intelligible to domain experts. 



knowledge acquisition process (Hoffman, 1987; Meyer, Booker & Bradshaw, 1990). For 

example, some of the techniques originally developed by Kelly (1955) to discover the 

conceptual structure of clients in psychotherapy have been applied to knowledge 

acquisition. Interviewing strategies and representational devices developed by Novak  in 

an educational setting (1977; Novak & Gowin, 1984) have also proven useful in this 

regard. 

 

Analysis tools. Both formal and heuristic modes of analysis are available within many 

knowledge acquisition tools as a means of verifying and refining the knowledge base. 

Shaw and Gaines (1988), for instance, have developed a methodology for analyzing areas 

of consensus, conflict, correspondence, and contrast between the conceptual systems of 

two or more experts. Many knowledge acquisition tools have also been integrated with 

consultation systems, making extensive performance testing of the system possible (e.g., 

Shema & Boose, 1988; Ford et al., 1990c; Gaines & Rappaport, 1989). 

 

2.2. DDUCKS: An Integrated Environment for Knowledge Acquisition and Decision 

Analysis 

 

Early knowledge-based tools generally made strong assumptions about their operating 

environment. At first, dedicated, stand-alone applications were the rule. Over time, as the 

value of adding “hooks” for access to external applications and data was realized, most 

knowledge-based tools still operated under the assumption that they were in ultimate 

control of the system as the highest level executive. Currently, the greatest potential for 

use of knowledge-based systems is in areas requiring close interaction with traditional 

software applications and data. An application that assumes it is in ultimate control will 

be ineffective in such environments. 

 



Brodie (1989) has discussed the need for “intelligent interoperability” in information 

systems. He defines the term to mean intelligent cooperation among systems to optimally 

achieve specified goals. While there is little disagreement that future computing 

environments will consist of multiple heterogeneous software systems running on 

multiple heterogeneous machines, most current computer systems are disjoint: they do 

not communicate (Figure 5). Until fairly recently, computer systems that could 

communicate nearly always used ad hoc interfaces for their particular connection. The 

recent growth in popularity of object-oriented approaches and the development of a few 

important agreed-upon protocols (e.g., SQL, the standard database interface language for 

relational database management systems) has nurtured the hope that encapsulated 

connectivity might someday become a reality. 
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Figure 5. Evolution of system connectivity (Adapted from Brodie, 1989) 

 

A high level of interoperability requires knowledge of the capabilities of each system, so 

that task planning, resource allocation, execution, monitoring, and, possibly, intervention 

between the systems can take place. Ideally, a mechanism functioning as a global planner 

or resource agent would manage cooperation activities (Figure 6). 
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Figure 6. Cooperating systems with global planner (Adapted from Brodie, 1989). 

 

While a global planner would be workable for small networks of systems, such a scheme 

would quickly become impractical as the size of the network grew. The activity of the 

global planner would become a bottleneck for the (otherwise distributed) system. A final 

step toward intelligent interoperability would be to embed a resource agent within each 

cooperating system (Figure 7). Agents (i.e., the cooperating systems in the network) 

would ask their resource agent for the needed resources, thus providing a level of 

encapsulation at the planning level analogous to the encapsulation provided at the level of 

protocol. 
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Figure 7. Cooperating systems with distributed planner (Adapted from Brodie, 1989) 

 



To make progress toward the goal of intelligent interoperability between Axotl and other 

potential system components, we defined an “open architecture” integrating environment 

that allows for a high degree of connectivity along with access to a global planner to 

facilitate intelligent cooperation. We call this environment DDUCKS (Decision and 

Design Utilities for Comprehensive Knowledge Support)1.. DDUCKS will both integrate 

knowledge acquisition tools and also facilitate coordination of local or networked 

applications such as spreadsheets, databases, or hypermedia software (Bradshaw, 

Covington, Russo & Boose, 1990; Figure 8). One of DDUCKS’ components, MANIAC 

(MANager for InterApplication Communication) supports asynchronous and 

synchronous communication between any number of multitasking applications. 

DDUCKS runs on Apple Macintosh II hardware; subsets of DDUCKS run in other 

environments. 
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Figure 8. DDUCKS  integrates components from Axotl, Aquinas, and other applications. 

                                                
1 Either the first or second D in DDUCKS is silent, depending on whether one using the tool in a decision or design context. 



 

While integration of tools and approaches is a desirable and necessary objective, Ford et 

al. (1990b) wisely caution against the dangers involved in indiscriminate combining of 

different tools and techniques: 

 

“Integration is the battle cry as tool-makers rush to produce hybrid knowledge 

acquisition tools. However, it is becoming widely realized that ad hoc 

combinations of techniques and tools—a sort of Occam’s hell—may not 

contribute much to ameliorating the knowledge acquisition bottleneck.” 

 

To counteract the problems inherent in conceptual ad hoc’ism, they argue that “tool-

makers should exploit theory as a means of building their tools on a sound footing and as 

a framework in which to make explicit their epistemological assumptions. (Ford & 

Adams-Webber, 1990a)”. The relationship between the theoretical foundations of 

Aquinas, Axotl, and Canard in personal construct theory, decision theory, and design 

methods theory are discussed in Bradshaw and Boose (1990), Bradshaw, Boose, 

Covington, and Russo (1989), and Shema, Bradshaw, Covington, and Boose (1990). 

 

In the remainder of this paper, we will describe the decision analysis workbench and 

knowledge base tools of Axotl. Then we will outline the knowledge acquisition tools (e.g., 

Aquinas and Canard) being developed to support the creation of content and process 

knowledge bases for applications of Axotl. 

2.3. Axotl: A Knowledge-Based Decision Analysis Workbench 

 

Axotl combines a general-purpose decision analysis workbench with knowledge base tools to 

assist individuals consulting with the system about a specific problem. The first version of 

Axotl was developed as part of a joint effort by Boeing Computer Services and Strategic 

Decisions Group (SDG) to build a flexible, general-purpose intelligent decision system that 



could be applied to internal R&D management decisions. The application is called PIE, for 

Project Investment Evaluator. Boeing Computer Services, with its experience in building 

knowledge-based systems, contributed expertise in software engineering, knowledge 

engineering, and Boeing-specific knowledge on this project.  SDG has a major practice in 

applying decision analysis to R&D management decisions.  In addition, SDG staff have 

pioneered the theory and practice of decision analysis (Howard & Matheson, 1984) and had 

previously implemented intelligent decision system application prototypes (Holtzman, 1989). 

 

Following the successful demonstration of knowledge-based guidance of a decision analysis 

consultation in mid-1988, it was decided that Boeing aÍnd SDG would pursue further 

development work on the system independently. Since that time, we have made a number of 

extensions to Axotl, and have developed DDUCKS as the integrating framework for linking 

Axotl to Aquinas and other applications. We have loaned DDUCKS to a medical non-profit 

organization for evaluation of its applicability to bone marrow transplant follow-up care 

(Sullivan & Shulman, 1989). We are also applying portions of the environment to facilitate 

demonstrations of design knowledge capture for a NASA-sponsored Corporate Memory 

Facility project (Bradshaw, Boose, Covington & Russo, 1989; Boose, Bradshaw, Shema, & 

Covington, 1989; Boose, Bradshaw & Shema, 1990; Shema, Bradshaw, Boose & Covington, 

1990), and in business process management in a Boeing quality improvement context 

(Bradshaw, Kipersztok, Nguyen, & Holm, 1990). SDG has also enhanced their version of the 

software, and is developing a commercial application to R&D management, called R&D 

Analyst™1. Holtzman and Seiver (1988) have developed a successful application of the 

system that assists critical care clinicians in ventilator management decision-making. 

 

Axotl was developed on the Apple Macintosh II (MacXotl) and runs on all platforms that 

support ParcPlace Smalltalk-80 (e.g., Sun, Apollo, Hewlett-Packard, IBM '386 compatibles, 

                                                
1 R&D Analyst is a trademark of Strategic Decisions Group. All rights reserved. 



IBM RS/6000). We will first describe the decision analysis workbench, then the knowledge 

base tools. 

 

2.3.1. Decision Analysis Workbench 

 

 Many knowledge-based systems in use at Boeing are prescriptive in nature. They aim not 

only to describe situations but also to recommend specific actions. Recommendations made 

by such systems depend on the three kinds of knowledge shown in Figure 9: the alternatives 

available, information about consequences associated with the alternatives, and preferences 

among these consequences. 

 

INFORMATION
"What can happen?"
• Uncertain evidence
• Facts

ALTERNATIVES
"What can I do?"
• Enumerated alternatives
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PREFERENCES
"What do I care about?"
• Attitudes
• Objectives
• Constraints  

Figure 9. Decision analysis depends on three kinds of knowledge. 

 

The decision analysis workbench contains a  graphical editor that is used for creating and 

refining models of alternatives, preferences, and uncertainties relevant to a specific decision. 

These models, called influence diagrams, are solved to obtain recommended actions in a way 

that is consistent with probability and utility theory (Howard & Matheson, 1981).  



 

 

Figure 10. An influence diagram for an R&D investment decision. 

 

Figure 10 shows a screen snapshot of an Axotl influence diagram (Howard & Matheson, 

1981) representing a prototype R&D project decision problem.  The problem is to determine 

an investment strategy for “Scribe” an automated speech-to-text transcriber, taking technical 

risks and market uncertainties into account. The investment strategy is composed of three 

decisions (development investment level, production investment level, and unit price), 

represented by rectangular nodes on the diagram. Oval nodes represent technical risk 

variables (accuracy, speed), production uncertainties (unit cost), and market uncertainties 

(market size). The eight-sided node labeled “Profit” has been designated as the criterion to 

maximize in evaluating the decision model to determine an optimal policy. Arrows between 

nodes represent relationships where influence or information is imparted from one variable to 



another. For example, arrows from “Speed” and “Accuracy” to “Market size” represent the 

assertion that the degree of technical achievement in these areas will affect the size of the 

market for “Scribe”. The arrows from “Speed” and “Accuracy” to “Unit price” indicate that 

these uncertainties will be known at the time a pricing decision is made. An additional type 

of node, not shown in this diagram, can represent a deterministic function. This facilitates 

transparent links from the influence diagram to external procedures or to programs such as 

spreadsheets and databases. 

 

The method of solving influence diagrams implemented in Axotl incorporates a new 

approach developed by Smith (1988) that allows a wide range of questions to be answered 

directly from the diagram. It preserves the entire underlying joint distribution during solution 

and inference procedures, rather than just the value lottery and decision policy as is usually 

done (e.g., Shachter, 1986a). The distribution editor, used to structure conditional probability 

distributions, is another feature unique to Axotl. It introduces the concepts of coalescence 

(i.e., sharing of atomic distributions) and clipping (i.e., explicit pruning of impossible or 

unnecessary conditioning paths and their atomic distributions). 

 

One of the most significant results of Axotl development was the formulation of generic 

procedures for the use of influence diagrams in valuing information and control (J. Matheson 

(1988) discusses some of these issues). An approach was developed to allow the automated 

conversion of any influence diagram to “Howard Canonical Form” so that value-of-perfect-

information or -imperfect-information questions could be answered for any variable. Based 

on an understanding that value-of-control calculations can readily be interpreted only for 

causal influence diagrams, we developed heuristic techniques that specified when it was 

appropriate to ask value-of-perfect-control or -imperfect-control questions and to formulate 

generic procedures for answering them. Eventually, these techniques could be fully 

automated. 

 



2.3.2. Knowledge Base Tools 

 

When configured with the appropriate knowledge, the knowledge base tools in Axotl guide 

decision makers through the process of formulating, evaluating, and refining a decision 

model in a specific domain. The model is kept to tractable size by deliberately limiting the 

problem domain for a given application and using heuristic methods represented in 

knowledge bases to select and prune variables during influence diagram construction. These 

heuristics can be regarded as instances of the types of categorical methods described by 

Szolovitz and Pauker (1978): 

 

”When the complex problems need to be addressed—which treatment should be 

selected, how much of the drug should be given, etc.—then causal or probabilistic 

models are necessary. The essential key to their correct use is that they must be applied 

in a limited problem domain where their assumptions can be accepted with confidence. 

Thus, it is the role of categorical methods to discover what the central problem is and to 

limit it as strongly as possible; only then are probabilistic techniques appropriate for its 

solution.” 

 

We distinguish between two major types of knowledge in the knowledge base: content  and 

process (Figure 11). Each kind of knowledge poses a different set of problems for decision 

makers. The problems are addressed through the use of the knowledge base tools, in 

conjunction with the knowledge acquisition tools. 
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Figure 11. Different kinds of problem solving knowledge, and problems that people might face in dealing 
with each of them. 

 

Content knowledge. Content knowledge is substantive; it is the what of decision model 

building during a consultation with a knowledge-based system. Internally, content knowledge 

is represented as a set of partially defined influence diagram variables for a class of 

decisions, their interrelationships, and the conditions under which they may be added to or 

removed from the influence diagram being constructed. 

 

During the knowledge acquisition phase of the PIE project, we constructed a “big influence 

diagram” showing all of the structure that would be considered during the consultation 

process. Once agreement was reached about this structure, it was further broken down into 

smaller, overlapping groups of related variables along with some possible value models. We 

found that the “big influence diagram” for R&D project decisions had three distinct stages 

(research, development, application) and three possible value models (contract, market, 

simple value). 

 



These value models and groups of influence diagram variables serve as the building blocks 

for the first-cut decision model that is constructed during subsequent consultations with a 

decision maker. Through a process called template development, the system ask the decision 

maker questions about the project that will help it determine the stage of development and 

the appropriate value model (D. Matheson, 1988). The system uses this project information 

to construct a generic, skeletal template. The dialogue continues to help decision makers 

expand and refine the initial model according to their specific circumstances. 

 

Process knowledge. Process knowledge is strategic; it is the how of decision model building 

during a consultation. It consists of generic and domain-specific expertise about what to do at 

each stage of the decision-making process. Additionally, it may embody knowledge about the 

business process context. Internally, process knowledge is represented by activity graphs and 

rules. Figure 12 represents a view of the process of decision making for R&D projects that 

we used in developing the PIE application. 
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Figure 12. An overview of project investment decision making. 

 

The cycle shown in Figure 12 represents general process knowledge about what to do at each 

stage of the R&D decision making process. We used the detailed process knowledge we 

acquired from decision analysis and Boeing experts to build a prototype R&D project 

selection decision activity graph (Figure 13) and rule base. Consultations using this 



knowledge base proved the ability of PIE to pose a series of questions to a Boeing manager 

about a project under consideration and to formulate, evaluate, and appraise an appropriate 

influence diagram model based on answers to these questions. The decision analysis tools ran 

under control of the knowledge base, and the appropriate decision analysis task modules 

were invoked by the knowledge base at different times to evaluate the model and provide 

answers to value-of-information and value-of-control questions. The influence diagram was 

linked to a Microsoft Excel spreadsheet model containing financial formulas. Facilities in 

Axotl allowed Excel to be launched and the spreadsheet computations made automatically 

during influence diagram solution. 

 

 

Figure 13. A portion of the R&D project selection activity graph. 

 



An activity graph is a representation of the consultation process as a hierarchy of goals and 

activities (Holtzman & Russo, 1988). There are two kinds of nodes: goals and activities. The 

topmost goal in the hierarchy represents the successful completion of a consultation; any 

number of subgoals may be added. At the leaves of the graph, activities represent procedures 

that may be executed in support of goals during the course of a consultation (e.g., “assess 

probability of technical success,” “calculate value-of-information on market size”). 

Successful completion of a consultation requires that a sufficient set of goals be satisfied, 

either through the execution of the supporting activities or through being explicitly declared 

satisfied by the individual. 

 

The activity graph facility includes components for viewing and editing goals and activities 

graphically. Activity graphs can call other activity graphs. During a consultation, an agenda 

is constructed from a “cut set” through the activity graph. The activities are executed one by 

one until the failure of an activity or some other change in conditions necessitates a 

modification of the agenda. The activity graph and agenda are invisible to the decision 

maker, who sees only the consultation interface. 

 

A knowledge base tool called the heuristic advisor selects and modifies activity graphs 

during consultations. The knowledge base for the heuristic advisor is currently represented as 

rules and facts within an MRS-like inference engine (Russell, 1985), implemented in 

Smalltalk-80. 

 

 

2.4. Knowledge Acquisition Tools for Axotl 

 

An understanding of the roles that different kinds of knowledge play in problem solving 

has begun to drive requirements for knowledge acquisition tool development. Figure 14 



is a view of how various knowledge acquisition tools under development at Boeing 

support different aspects of the problem1. 
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Figure 14. An idealized view of how different tools and representations support different knowledge 
requirements. 
 

These tools are organized around three different roles for content knowledge and two for 

process knowledge. Each role has one or more forms of representation associated with it; 

some have interviewing techniques or analysis tools as well. 

 

2.4.1. Content Knowledge 

 

Elements of the decision basis can be separated into three major components: alternatives, 

information, and preferences (Figure 15). Possibility tables, grids, and graphs are the major 

mediating representations used to facilitate knowledge acquisition. 

 

                                                
1 This is, of course, an idealized view of how the tools work together. Although integration of functionality is an important 
goal of our work, some of the tools currently overlap more than others, and some are better integrated than others. The tools 
are discussed in more detail below. 
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Figure 15. Three roles for knowledge in the content knowledge base with associated forms of representation. 

 

Alternatives.  DDUCKS includes Canard1, a knowledge acquisition tool based on possibility 

tables that can be used to generate and structure complex alternatives (Shema, Bradshaw,  

Covington, and Boose, 1990). Links are maintained between the tables and decision nodes 

that are part of the content knowledge base. The possibility table representation is based on 

the manually developed strategy tables (McNamee & Celona, 1987) and morphological 

charts (Zwicky, 1969) that have been used by decision analysts and designers for many years. 

Canard automates this representation and extends its logic and structure to allow knowledge-

based inference and the representation of more complex problems (e.g., hierarchical tables, 

explicit representation of constraints). 

 

At one point, we used a manually developed possibility table similar to the one in Figure 16 

to help us define alternatives for Axotl system development. Alternatives are shown in the 

leftmost column. Other columns represent important components of the system and various 

options for development within each one. The path of outlined boxes traced through the 
                                                
1 A canard is an airplane that sports a tail in front rather than in back—a symbol of our “backward” analytical approach to 
synthesis. 



columns defines the “base case” alternative. Time and budget requirements and constraints 

could also be associated with variables in the table. Within Canard these constraints are used 

to “gray out” infeasible options during the definition of a path. 
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Figure 16. A possibility table defining Axotl development alternatives. 

 

A major concern is helping people better explore the space of alternatives. Cognitive 

scientists have long known that humans typically retrieve only a small fraction of available 

alternatives when generating hypotheses. People tend to anchor on initial guesses, giving 

insufficient regard to subsequent data. For a variety of reasons, people may not be able to 

visualize whole classes of possibilities. Although it would be impossible in practice to 

guarantee that all relevant alternatives were indeed identified, Canard can help people 

consider a richer set of alternatives. An iterative search procedure that proposes new 

alternatives based on permutations of the constraint space assists in generation of 

alternatives. Through an analogous procedure, the system can hypothesize new constraints 

based on examples of previously defined alternatives. 

 

Preferences. Knowledge acquisition tools can be used to help people determine important 

dimensions of value associated with the alternatives. Within Aquinas, a number of useful 

representation, interviewing, and analysis techniques have been developed. Many of these 

techniques are based on the research of George Kelly (1955), a clinical psychologist who 



emphasized the foundational role of distinctions (personal constructs) underlying the 

processes of perception and reasoning. For example, using a triadic elicitation interviewing 

technique, Aquinas would ask people to define preferences by considering groups of 

alternatives presented three at a time: “Think of an important consequence that two of A1, 

A2, and A3 share, but that the other does not. What is that characteristic?” After giving B as 

that characteristic, the person would be asked about A2, A3, and A4 and come up with a 

second characteristic C, and so forth. 

 

One way of representing this information is through a repertory grid (Figure 17). A grid is a 

matrix with elements (i.e., alternatives or outcomes) ranged along the bottom and constructs 

(i.e., dimensions of similarity and difference between elements), defined by extension, as a 

horizontal row of point values (or probability distributions on those values) within the matrix. 

Although the grid and network representations in Figure 17 are logically equivalent, we find 

both of them useful and complementary as problem clarifiers from a human factors point of 

view (Jones, 1981). The grid presentation allows the person to see patterns of similarity and 

difference that would otherwise be difficult to grasp. Analysis techniques in Aquinas (e.g., 

similarity analysis, cluster analysis) exploit these patterns to help users discriminate more 

carefully among similar concepts as part of model refinement. Implication analysis helps 

users discover important dependencies between constructs. A more complete discussion of 

the relationship of personal construct and decision analytic methods is given in Bradshaw 

and Boose (1990). 
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Figure 17 A preference grid and its corresponding influence diagram representation.  

 

Information. Many of the same representation, interviewing, and analysis techniques 

mentioned above can be used to develop information models for the knowledge base.1 

Interviewing techniques (e.g., laddering) develop the structure of the networks by a recursive 

expansion procedure that terminates when all leaf nodes are directly observable. Heckerman 

has developed a related method called similarity networks, which uses techniques similar to 

those used in personal construct methodology to identify and display relationships indicating 

constraints on conditional independence relationships (Horvitz, Breese, & Henrion, 1988). 

Figures 18 and 19 show equivalent information grid and relevance diagram representations. 

When the structure of the dependencies between variables is simple, the transformation 

between grids and influence diagrams is straightforward. For complex dependencies, some of 

the methods described by Howard (1988) in his paper on knowledge maps may be useful. 

These methods allow complex probabilistic assessments to be broken down into a series of 

simpler ones by manipulating the conditioning relationships between chance nodes. We are 

sponsoring a project with Seattle University to develop procedures to make the use of disjoint 

and redundant knowledge maps practical in Axotl. 
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Figure 18. A simple  information grid and its corresponding influence diagram representation. 
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Figure 19. A more complex information grid and its corresponding influence diagram representation. 

 

Figure 20 illustrates some of the relationships possible between elements in the content 

knowledge base and the structure of a particular influence diagram. Note that the direction of 

conditioning between chance nodes during the knowledge acquisition process is often the 

reverse of the direction that is required when the influence diagram is constructed. 
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Figure 20. Relationships between elements in the content knowledge base and the structure of an influence 
diagram. 

 

2.4.2. Process Knowledge 

 

We distinguish between two major types of process knowledge: plans and plan selection 

knowledge (Figure 21). 
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Figure 21. Two roles and sets of representations for knowledge in the process knowledge base. 

 

Plans. Despite many advantages as a representational device, activity graphs have proved to 

be unworkable as a knowledge acquisition interface. For this reason, we are building an 

alternative means of activity graph entry based on hierarchical process flow charts 

(Bradshaw, Kipersztok, Nguyen, & Holm, 1990). Tasks described within process flows are 

automatically transformed into executable activity graphs (Figure 22). During a consultation, 

this activity graph is further compiled into an agenda, as described in section *** above1. 

Analysis and simulation tools provide verification and validation of the process model. 

 

                                                
1 In addition to their use in controlling a consultation, these tools are being applied to documentation and improvement of 
general business processes. 
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Plan selection knowledge.  Recently, we have begun to design knowledge acquisition tools 

for this type of knowledge. We have created graphical editors for world trees, rules, queries, 

and attributes that have simplified the construction of rules in knowledge bases. In the future, 

links to Aquinas will facilitate the construction of knowledge bases for the heuristic advisor. 

The heuristic advisor is a knowledge base tool that evaluates activities with respect to criteria 

such as completeness, balance, precision, and cost. Based on this evaluation, the heuristic 

advisor modifies the activity graph to re-order activities dynamically during a consultation. A 

related effort has dealt specifically with reasoning about computational resource tradeoffs 

(Horvitz, 1989). In contrast to our heuristic approach, Horvitz has developed these ideas 

within a formal framework.  

 
                                                
1 This figure is somewhat simplified for illustrative purposes. In reality, a separate activity graph would be compiled for the 
main process flow and the subprocess (F->G). This subgraph would be called by the main graph dynamically during 
execution. 



3. DISCUSSION 

 

The heart of our approach to making knowledge acquisition simpler for intelligent decision 

systems is “divide and conquer”. Having experienced the development of many knowledge-

based system prototypes using automated knowledge acquisition tools, we are convinced that 

such a strategy will permit experts to do much of their own knowledge engineering, without 

requiring a great deal of specialized training (Boose, Bradshaw, Kitto, & Shema, 1990). To 

the experienced decision analyst or knowledge engineer, the development of these tools may 

seem completely unnecessary; there is little question that such a person would find it more 

efficient to work directly with influence diagrams and activity graphs than with the 

knowledge acquisition tools we are defining. In addition, one could argue that by making it 

too easy on the naive users of a system, putting everything in their terms without requiring 

them to come to grips directly with the underlying methodology, we are promoting a “black 

box” mentality that makes it impossible for them to step in when the system breaks down or 

encounters a problem it can’t solve. 

 

There is no easy answer to these objections; there seems to be a real and inevitable tradeoff 

between the “acquirability” and the expressive power of knowledge representations (Gruber, 

1989). Figure 23 shows this tradeoff as a dark curved line. The most powerful means of 

getting an idea into a computer is programming; unfortunately, even with advances in 

software engineering, programming remains the most difficult form for nonspecialists to 

express their knowledge in. On the other hand, form-filling interfaces that correspond to the 

way a user normally enters information on paper are very easy to learn but are very rigid and 

limit the applicability of the tools to the very specific problems that the system designer has 

foreseen. 
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Figure 24. The tradeoff between acquirability and expressive power. (Figure adapted from Gruber, 1989) 

 

Knowledge acquisition tools do not eliminate the competition between acquirability and 

expressive power, but they can act as a kind of magnet to help pull the curve out (Figure 24; 

light gray line). Through the application of automated techniques, acquirable interfaces can 

become more powerful, and powerful interfaces can be more easily learned and used. 

Aquinas and Axotl make the power of influence diagrams accessible to a wider range of 

people. 
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Figure 24. Automated knowledge acquisition tools can help make acquirable interfaces more powerful, and 
powerful interfaces more easily learned and used (Figure adapted from Gruber, 1989). 

 

Because new users will always prefer acquirable interfaces and experienced users will prefer 

powerful ones, the best strategy to adopt when adding new layers of mediating representation 

between the new user and the underlying problem-solving model is to leave the hooks to the 

lower level representations intact. Designers of such systems should also find ways to 

encourage the less experienced users to keep learning and move on to more expert modes of 

interaction as they become more familiar and comfortable with the system. Experienced 

users, on the other hand, should be able to go directly to the heart of the system without 

interference from a “friendly” interface. This is the approach taken in the nested “Russian 

doll” interface of HyperCard, where users can graduate from browsing to painting to 

authoring to scripting at their own rate while performing useful work with the system at each 

level. This is also the consistent with the “glass box” idea advocated by Wenger and Brown 

at IRL: to design software that promotes understanding of and access to the inner workings 

of the system (Feinstein, 1989). 



 

Our conjecture is that high-level representations and interviewing and analysis tools will be 

helpful to experienced as well as naive users. This is a question that we hope to address as 

the tools are evaluated in real-world domains. 

 

We are cautiously optimistic about the future of DDUCKS. Although current and future 

applications will no doubt continue to bring new challenges and difficult problems to solve, 

the tools embody many years of experience in decision analysis automation and knowledge-

based system development. Furthermore, the system derives power from its integration of 

elements that we feel will be the building blocks of future systems for automated support of 

complex decisions: a decision analysis workbench for sound reasoning under uncertainty and 

resolution of preference issues; a knowledge-based system for provision of help in building 

formal decision models and to promote the re-use of domain knowledge; and a collection of 

knowledge acquisition tools tailored to the domain that allow such systems to be efficiently 

modeled, more easily maintained, and thoroughly tested. 
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